

US009471072B1

# (12) United States Patent Laird et al.

# (10) Patent No.: US 9,471,072 B1

(45) **Date of Patent:** Oct. 18, 2016

### (54) SELF-ADAPTIVE VOLTAGE SCALING

(71) Applicant: Western Digital Technologies, Inc., Irvine, CA (US)

(72) Inventors: William K. Laird, Corona, CA (US);

John R. Agness, Laguna Hills, CA

(US)

(73) Assignee: WESTERN DIGITAL

TECHNOLOGIES, INC, Irvine, CA

(US)

(\*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 101 days.

(21) Appl. No.: 14/322,438

(22) Filed: Jul. 2, 2014

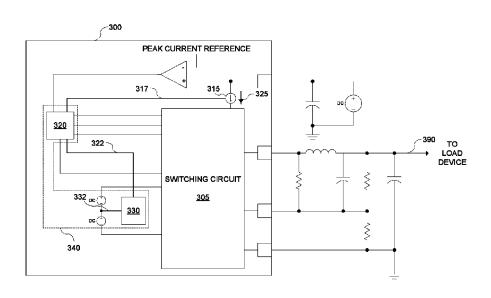
### Related U.S. Application Data

- (60) Provisional application No. 61/904,423, filed on Nov. 14, 2013.
- (51) Int. Cl. *H02M 3/157* (2006.01) *G05F 1/46* (2006.01)

### (56) References Cited

## U.S. PATENT DOCUMENTS

| 6,014,283 A | 1/2000 | Codilian et al.    |
|-------------|--------|--------------------|
| 6,052,076 A | 4/2000 | Patton, III et al. |
| 6,052,250 A | 4/2000 | Golowka et al.     |


| 6,067,206 | Α  | 5/2000  | Hull et al.     |
|-----------|----|---------|-----------------|
| 6,078,453 | Α  | 6/2000  | Dziallo et al.  |
| 6,091,564 | Α  | 7/2000  | Codilian et al. |
| 6,094,020 | A  | 7/2000  | Goretzki et al. |
| 6,101,065 | Α  | 8/2000  | Alfred et al.   |
| 6,104,153 | A  | 8/2000  | Codilian et al. |
| 6,122,133 | A  | 9/2000  | Nazarian et al. |
| 6,122,135 | A  | 9/2000  | Stich           |
| 6,141,175 | A  | 10/2000 | Nazarian et al. |
| 6,160,368 | A  | 12/2000 | Plutowski       |
| 6,181,502 | В1 | 1/2001  | Hussein et al.  |
| 6,195,222 | B1 | 2/2001  | Heminger et al. |
| 6,198,584 | В1 | 3/2001  | Codilian et al. |
| 6,198,590 | B1 | 3/2001  | Codilian et al. |
| 6,204,988 | В1 | 3/2001  | Codilian et al. |
| 6,243,223 | В1 | 6/2001  | Elliott et al.  |
| 6,281,652 | В1 | 8/2001  | Ryan et al.     |
| 6,285,521 | B1 | 9/2001  | Hussein         |
| 6,292,320 | В1 | 9/2001  | Mason et al.    |
| 6,310,742 | В1 | 10/2001 | Nazarian et al. |
| 6,320,718 | B1 | 11/2001 | Bouwkamp et al  |
| 6,342,984 | В1 | 1/2002  | Hussein et al.  |
| 6,347,018 | B1 | 2/2002  | Kadlec et al.   |
| 6,369,972 | B1 | 4/2002  | Codilian et al. |
| 6,369,974 | B1 | 4/2002  | Asgari et al.   |
| 6,425,086 | B1 | 7/2002  | Clark et al.    |
| 6,462,896 | B1 | 10/2002 | Codilian et al. |
| 6,476,996 | B1 | 11/2002 | Ryan            |
| 6,484,577 | B1 | 11/2002 | Bennett         |
| 6,493,169 | B1 | 12/2002 | Ferris et al.   |
| 6,496,324 | B1 | 12/2002 | Golowka et al.  |
| 6,498,698 | B1 | 12/2002 | Golowka et al.  |
| 6,507,450 | В1 | 1/2003  | Elliott         |
|           |    | (Con    | tinued)         |

Primary Examiner — Jeffrey Sterrett

### (57) ABSTRACT

A regulator circuit includes: a current detector configured to sense a load current and convert the sensed load current to a DC current sense signal; and an adjustment circuit configured to adjust an output voltage within predetermined upper and lower voltage limits based on the DC current sense signal.

## 14 Claims, 7 Drawing Sheets



# US 9,471,072 B1 Page 2

| (56) |                              | Referen            | ces Cited                          | 7,006,320              |    |                    | Bennett et al.                     |
|------|------------------------------|--------------------|------------------------------------|------------------------|----|--------------------|------------------------------------|
|      | 211                          | PATENT             | DOCUMENTS                          | 7,016,134<br>7,023,637 |    |                    | Agarwal et al.<br>Kupferman        |
|      | 0.5                          | . IAILIVI          | DOCOMENTS                          | 7,023,640              |    | 4/2006             |                                    |
|      | 6,519,707 B2                 |                    | Clark et al.                       | 7,027,256              |    | 4/2006             | Subrahmanyam et al.                |
|      | 6,534,936 B2                 |                    | Messenger et al.                   | 7,027,257<br>7,035,026 |    | 4/2006<br>4/2006   | Kupferman<br>Codilian et al.       |
|      | 6,538,839 B1 6,545,835 B1    | 3/2003<br>4/2003   | Codilian et al.                    | 7,046,472              |    | 5/2006             | Melkote et al.                     |
|      | 6,549,359 B1                 |                    | Bennett et al.                     | 7,050,249              | В1 | 5/2006             |                                    |
|      | 6,549,361 B1                 |                    | Bennett et al.                     | 7,050,254<br>7,050,258 |    |                    | Yu et al.<br>Codilian              |
|      | 6,560,056 B1<br>6,568,268 B1 | 5/2003<br>5/2003   | Ryan<br>Bennett                    | 7,054,098              |    |                    | Yu et al.                          |
|      | 6,574,062 B1                 |                    | Bennett et al.                     | 7,061,714              |    | 6/2006             |                                    |
|      | 6,577,465 B1                 |                    | Bennett et al.                     | 7,064,918<br>7,068,451 |    |                    | Codilian et al.<br>Wang et al.     |
|      | 6,614,615 B1<br>6,614,618 B1 |                    | Ju et al.<br>Sheh et al.           | 7,068,459              |    |                    | Cloke et al.                       |
|      | 6,636,377 B1                 |                    | Yu et al.                          | 7,068,461              | В1 |                    | Chue et al.                        |
|      | 6,690,536 B1                 | 2/2004             |                                    | 7,068,463<br>7,088,547 |    |                    | Ji et al.<br>Wang et al.           |
|      | 6,693,764 B1 6,707,635 B1    |                    | Sheh et al.<br>Codilian et al.     | 7,088,347              |    |                    | Ryan et al.                        |
|      | 6,710,953 B1                 |                    | Vallis et al.                      | 7,110,208              | В1 | 9/2006             | Miyamura et al.                    |
|      | 6,710,966 B1                 | 3/2004             | Codilian et al.                    | 7,110,214              |    |                    | Tu et al.                          |
|      | 6,714,371 B1                 |                    | Codilian et al                     | 7,113,362<br>7,113,365 |    |                    | Lee et al.<br>Ryan et al.          |
|      | 6,714,372 B1 6,724,564 B1    |                    | Codilian et al.<br>Codilian et al. | 7,116,505              | B1 |                    | Kupferman                          |
|      | 6,731,450 B1                 | 5/2004             | Codilian et al.                    | 7,126,781              |    | 10/2006            | Bennett                            |
|      | 6,735,041 B1                 |                    | Codilian et al.                    | 7,158,329<br>7,180,703 |    | 1/2007<br>2/2007   | Ryan<br>Subrahmanyam et al.        |
|      | 6,738,220 B1<br>6,747,837 B1 |                    | Codilian<br>Bennett                | 7,184,230              | B1 | 2/2007             | Chue et al.                        |
|      | 6,760,186 B1                 |                    | Codilian et al.                    | 7,196,864              |    | 3/2007             | Yi et al.                          |
|      | 6,788,483 B1                 |                    | Ferris et al.                      | 7,199,966<br>7,203,021 |    | 4/2007<br>4/2007   | Tu et al.<br>Ryan et al.           |
|      | 6,791,785 B1 6,795,268 B1    | 9/2004<br>9/2004   | Messenger et al.                   | 7,203,847              |    | 4/2007             |                                    |
|      | 6,819,518 B1                 |                    | Melkote et al.                     | 7,209,321              |    |                    | Bennett                            |
|      | 6,826,006 B1                 |                    | Melkote et al.                     | 7,212,364<br>7,212,374 |    | 5/2007             | Lee<br>Wang et al                  |
|      | 6,826,007 B1 6,847,502 B1    |                    | Patton, III<br>Codilian            | 7,212,374              |    |                    | Bennett                            |
|      | 6,850,383 B1                 |                    | Bennett                            | 7,224,546              |    |                    | Orakcilar et al.                   |
|      | 6,850,384 B1                 |                    | Bennett                            | 7,248,426              |    | 7/2007             |                                    |
|      | 6,867,944 B1 6,876,508 B1    | 3/2005             | Ryan<br>Patton, III et al.         | 7,251,098<br>7,253,582 |    |                    | Wang et al.<br>Ding et al.         |
|      | 6,882,496 B1                 |                    | Codilian et al.                    | 7,253,989              | В1 | 8/2007             | Lau et al.                         |
|      | 6,885,514 B1                 | 4/2005             | Codilian et al.                    | 7,265,933              |    |                    | Phan et al.                        |
|      | 6,900,958 B1<br>6,900,959 B1 |                    | Yi et al.<br>Gardner et al.        | 7,289,288<br>7,298,574 |    | 10/2007<br>11/2007 | Tu<br>Melkote et al.               |
|      | 6,903,897 B1                 |                    | Wang et al.                        | 7,301,717              | В1 | 11/2007            | Lee et al.                         |
|      | 6,914,740 B1                 | 7/2005             | Tu et al.                          | 7,304,819              |    | 12/2007<br>2/2008  | Melkote et al.                     |
|      | 6,914,743 B1 6,920,004 B1    |                    | Narayana et al.<br>Codilian et al. | 7,330,019<br>7,330,327 |    |                    | Bennett et al.<br>Chue et al.      |
|      | 6,924,959 B1                 |                    | Melkote et al.                     | 7,333,280              | В1 | 2/2008             | Lifchits et al.                    |
|      | 6,924,960 B1                 | 8/2005             | Melkote et al.                     | 7,333,290              |    |                    | Kupferman                          |
|      | 6,924,961 B1<br>6,934,114 B1 |                    | Melkote et al.<br>Codilian et al.  | 7,339,761<br>7,365,932 |    | 3/2008<br>4/2008   | Tu et al.<br>Bennett               |
|      | 6,934,114 B1<br>6,934,135 B1 | 8/2005             |                                    | 7,388,728              | В1 |                    | Chen et al.                        |
|      | 6,937,420 B1                 | 8/2005             | McNab et al.                       | 7,391,583              |    |                    | Sheh et al.                        |
|      | 6,937,423 B1 6,952,322 B1    |                    | Ngo et al.<br>Codilian et al.      | 7,391,584<br>7,433,143 |    | 6/2008             | Sheh et al.<br>Ying et al.         |
|      | 6,954,324 B1                 |                    | Tu et al.                          | 7,440,210              | В1 | 10/2008            | Lee                                |
|      | 6,958,881 B1                 |                    | Codilian et al.                    | 7,440,225              |    |                    | Chen et al.                        |
|      | 6,963,465 B1                 |                    | Melkote et al.                     | 7,450,334<br>7,450,336 |    |                    | Wang et al.<br>Wang et al.         |
|      | 6,965,488 B1<br>6,967,458 B1 | 11/2005<br>11/2005 | Bennett et al.                     | 7,453,661              |    |                    | Jang et al.                        |
|      | 6,967,811 B1                 | 11/2005            | Codilian et al.                    | 7,457,071              |    | 11/2008            | Sheh                               |
|      | 6,970,319 B1 6,972,539 B1    |                    | Bennett et al.                     | 7,466,509<br>7,468,855 |    | 12/2008<br>12/2008 | Chen et al.<br>Weerasooriya et al. |
|      | 6,972,540 B1                 |                    | Codilian et al.<br>Wang et al.     | 7,477,471              |    | 1/2009             | Nemshick et al.                    |
|      | 6,972,922 B1                 | 12/2005            | Subrahmanyam et al.                | 7,480,116              |    | 1/2009             | Bennett                            |
|      | 6,975,480 B1                 |                    | Codilian et al.                    | 7,486,060<br>7,489,464 |    |                    | Bennett<br>McNab et al.            |
|      | 6,977,789 B1 6,980,389 B1    | 12/2005<br>12/2005 | Kupferman                          | 7,492,546              |    |                    | Miyamura                           |
|      | 6,987,636 B1                 | 1/2006             | Chue et al.                        | 7,495,857              |    | 2/2009             | Bennett                            |
|      | 6,987,639 B1                 | 1/2006             |                                    | 7,499,236              |    |                    | Lee et al.                         |
|      | 6,989,954 B1<br>6,992,848 B1 |                    | Lee et al.<br>Agarwal et al.       | 7,500,124<br>7,502,192 |    | 3/2009             | Seo<br>Wang et al.                 |
|      | 6,992,851 B1                 | 1/2006             |                                    | 7,502,192              |    | 3/2009             |                                    |
|      | 6,992,852 B1                 | 1/2006             | Ying et al.                        | 7,502,197              | В1 | 3/2009             | Chue                               |
|      | 6,995,941 B1                 |                    | Miyamura et al.                    | 7,505,223              |    | 3/2009             | McCornack                          |
|      | 6,999,263 B1 6,999,267 B1    |                    | Melkote et al.<br>Melkote et al.   | 7,542,225<br>7,548,392 |    |                    | Ding et al. Desai et al.           |
|      | 5,227,207 DI                 | 2,2000             | omore et ar.                       | 1,5 10,552             |    | 5,2007             | vom vt m.                          |

# US 9,471,072 B1 Page 3

| (56)  |                      | Referen | ces Cited                          | 8,358,114                    | B1  |        | Ferris et al.                         |              |
|-------|----------------------|---------|------------------------------------|------------------------------|-----|--------|---------------------------------------|--------------|
|       | HC                   | DATENT  | DOCLIMENTS                         | 8,358,145<br>8,390,367       |     |        | Ferris et al.<br>Bennett              |              |
|       | 0.5.                 | PATENT  | DOCUMENTS                          | 8,432,031                    |     |        | Agness et al.                         |              |
| 7 551 | ,390 B1              | 6/2000  | Wang et al.                        | 8,432,629                    |     |        | Rigney et al.                         |              |
|       | 3,016 B1             |         | Le et al.                          | 8,433,940                    |     |        | Youngs                                |              |
| ,     | 6,670 B1             |         | Ryan et al.                        | 8,451,697                    |     |        | Rigney et al.                         |              |
|       | ,941 B1              |         | Chen et al.                        | 8,482,873                    |     |        | Chue et al.                           |              |
|       | ,212 B1              |         | Li et al.                          | 8,498,076                    |     |        | Sheh et al.                           |              |
|       | ,470 B1              |         | Chen et al.                        | 8,498,172<br>8,508,881       |     |        | Patton, III et al.<br>Babinski et al. |              |
|       | 5,954 B1             |         | Chen et al.<br>Lifchits et al.     | 8,531,798                    |     |        | Xi et al.                             |              |
|       | 2,575 B1<br>5,399 B1 |         | Chen et al.                        | 8,537,486                    |     | 9/2013 | Liang et al.                          |              |
|       | 0,844 B1             | 11/2009 |                                    | 8,542,455                    |     | 9/2013 | Huang et al.                          |              |
|       | 5,782 B1             |         | Yu et al.                          | 8,553,351                    |     |        | Narayana et al.                       |              |
| 7,630 | ,162 B2              |         | Zhao et al.                        | 8,564,899                    |     |        | Lou et al.                            |              |
|       | ,447 B1              |         | Yu et al.                          | 8,566,627<br>8,576,506       |     |        | Halepete et al.<br>Wang et al.        |              |
|       | 5,604 B1             |         | Liang et al.                       | 8,605,382                    |     |        | Mallary et al.                        |              |
|       | 5,607 B1<br>0,067 B1 |         | Bennett<br>Ji et al.               | 8,605,384                    |     |        | Liu et al.                            |              |
|       | 3,835 B1             |         | Yu et al.                          | 8,610,391                    |     |        | Yang et al.                           |              |
|       | ,707 B1              |         | Liu et al.                         | 8,611,040                    |     |        | Xi et al.                             |              |
|       | ,854 B1              |         | Narayana et al.                    | 8,619,385                    | B1  |        | Guo et al.                            |              |
|       | 3,534 B1             |         | McCornack                          | 8,630,054<br>8,630,059       |     |        | Bennett et al.<br>Chen et al.         |              |
|       | 3,538 B1             |         | Chen et al.                        | 8,634,154                    |     |        | Rigney et al.                         |              |
|       | 3,539 B1<br>7,233 B1 |         | Bryant et al.<br>Bennett et al.    | 8,634,283                    |     |        | Rigney et al.                         |              |
|       | ,661 B1              |         | Bennett                            | 8,643,976                    |     |        | Wang et al.                           |              |
|       | ,676 B1              | 5/2010  |                                    | 8,649,121                    |     |        | Smith et al.                          |              |
|       | ,138 B1              | 5/2010  | Kupferman                          | 8,654,466                    |     |        | McFadyen                              |              |
|       | ,079 B1              | 6/2010  |                                    | 8,654,467                    |     |        | Wong et al.                           |              |
|       | 5,189 B1             |         | Bennett                            | 8,665,546<br>8,665,551       |     |        | Zhao et al.<br>Rigney et al.          |              |
|       | 1,941 B2             |         | Khodorkovsky et al.                | 8,670,206                    |     |        | Liang et al.                          |              |
|       | 5,592 B1<br>5,594 B1 |         | Liang et al.<br>Guo et al.         | 8,687,312                    |     | 4/2014 |                                       |              |
|       | 5,595 B1             |         | Guo et al.                         | 8,693,123                    | B1  |        | Guo et al.                            |              |
|       | ,461 B1              |         | Bennett                            | 8,693,134                    |     |        | Xi et al.                             |              |
|       | ,853 B1              |         | Guo et al.                         | 8,699,173                    |     |        | Kang et al.                           |              |
|       | ),856 B1             |         | Bennett et al.                     | 8,711,027<br>8,717,696       |     |        | Bennett<br>Ryan et al.                |              |
|       | ),857 B1             |         | Calaway et al.                     | 8,717,699                    |     | 5/2014 |                                       |              |
|       | 9,591 B1<br>9,595 B1 |         | Weerasooriya et al.<br>Chue et al. | 8,717,704                    |     |        | Yu et al.                             |              |
|       | 0,600 B1             |         | Babinski et al.                    | 8,724,245                    | B1  | 5/2014 | Smith et al.                          |              |
|       | ,662 B1              |         | Weerasooriya et al.                | 8,724,253                    |     |        | Liang et al.                          |              |
|       | 2,588 B1             |         | Ferris et al.                      | 8,724,524                    |     |        | Urabe et al.                          |              |
|       | 2,592 B1             |         | Liang et al.                       | 8,737,008<br>8,737,013       |     |        | Watanabe et al.<br>Zhou et al.        |              |
|       | 1,481 B1             |         | Kon et al.<br>Babinski et al.      | 8,743,495                    |     |        | Chen et al.                           |              |
|       | l,482 B1<br>),155 B1 | 1/2011  |                                    | 8,743,503                    |     |        | Tang et al.                           |              |
|       | ,404 B2              |         | Read et al.                        | 8,743,504                    |     | 6/2014 | Bryant et al.                         |              |
|       | 5,522 B1             |         | Calaway et al.                     | 8,749,904                    |     |        | Liang et al.                          |              |
|       | ,523 B1              |         | Panyavoravaj et al.                | 8,760,796                    |     |        | Lou et al.                            |              |
|       | 5,415 B1             | 3/2011  |                                    | 8,767,332<br>8,767,343       |     |        | Chahwan et al.<br>Helmick et al.      |              |
| 7,916 | 5,416 B1<br>5,420 B1 |         | Guo et al.<br>McFadyen et al.      | 8,767,354                    | B1  |        | Ferris et al.                         |              |
|       | 5,420 B1             |         | Guo et al.                         | 8,773,787                    |     | 7/2014 |                                       |              |
|       | ,238 B1              |         | Vasquez                            | 8,779,574                    |     |        | Agness et al.                         |              |
| 7,961 | ,422 B1              | 6/2011  | Chen et al.                        | 8,780,473                    |     |        | Zhao et al.                           |              |
|       | ,053 B1              |         | Anderson                           | 8,780,477<br>8,780,479       | BI  |        | Guo et al.                            |              |
|       | ,423 B1              |         | Tsai et al.                        | 8,780,479                    | B1  |        | Helmick et al.<br>Gayaka et al.       |              |
|       | 1,022 B1<br>9,357 B1 |         | Ryan et al.<br>Knigge et al.       | 8,792,202                    |     |        | Wan et al.                            |              |
|       | 0.360 B1             |         | Melkote et al.                     | 8,797,664                    |     |        | Guo et al.                            |              |
|       | 2,703 B1             |         | Calaway et al.                     | 8,804,267                    |     |        | Huang et al.                          |              |
| 8,077 | ,428 B1              |         | Chen et al.                        | 8,824,081                    |     |        | Guo et al.                            |              |
| 8,078 | 3,901 B1             |         | Meyer et al.                       | 8,824,262<br>2004/0051510    |     |        | Liu et al.<br>Saggini                 | H02M 2/157   |
|       | ,395 B1              | 12/2011 |                                    | 2004/0031310                 | AI  | 3/2004 | Saggilli                              | 323/282      |
|       | 5,020 B1             |         | Bennett<br>Dor et al.              | 2004/0095020                 | A1* | 5/2004 | Kernahan                              |              |
| 8 116 | 2,048 B2<br>5,023 B1 |         | Kupferman                          |                              |     |        |                                       | 307/35       |
|       | 5,934 B1             |         | Ferris et al.                      | 2009/0195230                 | A1* | 8/2009 | Adkins                                | H02M 3/156   |
|       | ,626 B1              |         | Ryan et al.                        |                              |     |        |                                       | 323/282      |
| 8,189 | ,286 B1              | 5/2012  | Chen et al.                        | 2010/0035085                 |     |        | Jung et al.                           |              |
|       | 3,106 B1             |         | Guo et al.                         | 2010/0072968                 | A1* | 3/2010 | Bianco                                |              |
|       | 1,222 B1             | 8/2012  |                                    | 2010/01/49700                | A 1 | 6/2010 | T ( 1                                 | 323/284      |
|       | 0,348 B1<br>5,005 B1 |         | Liu et al.<br>Zou et al.           | 2010/0148708<br>2010/0281284 |     |        | Jorgenson et al.<br>Kasprzak et al.   |              |
|       | 0,069 B1             |         | Knigge et al.                      | 2010/0281284 2012/0284493    |     |        | Lou et al.                            |              |
| ,     | ,174 B1              |         | Gardner et al.                     | 2013/0082675                 |     |        | Capodivacca                           | . G05F 1/468 |
| 5,551 | ,                    |         |                                    |                              |     | _ ,    | 1                                     | ,            |

# US 9,471,072 B1 Page 4

| (56)        | ]      | Referen | ces Cited     |         | 2013/0154568 A1     | 6/2013 | Li et al. |                       |
|-------------|--------|---------|---------------|---------|---------------------|--------|-----------|-----------------------|
|             | U.S. P | ATENT   | DOCUMENTS     |         | 2014/0097814 A1*    | 4/2014 | Brewster  | H02M 3/156<br>323/282 |
|             | 0.0.2  |         |               |         | 2015/0035510 A1*    | 2/2015 | Hoshino   | H02M 3/157            |
|             |        |         |               | 323/283 |                     |        |           | 323/283               |
| 2013/012087 | 0 A1   | 5/2013  | Zhou et al.   |         |                     |        |           |                       |
| 2013/014824 | 0 A1   | 6/2013  | Ferris et al. |         | * cited by examiner |        |           |                       |



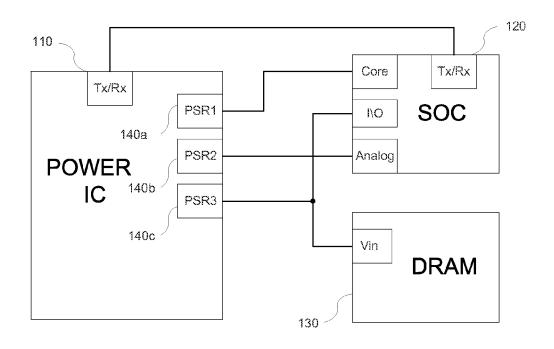



FIG. 1

Oct. 18, 2016

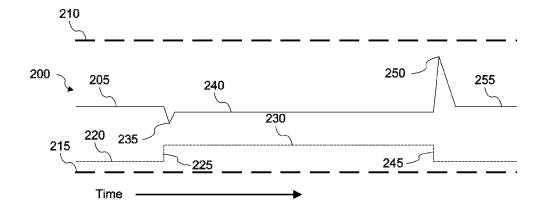



FIG. 2

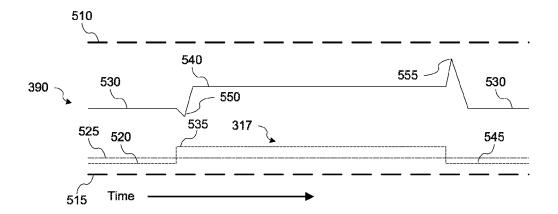
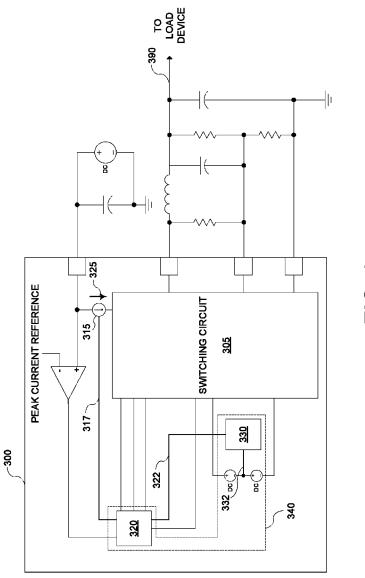




FIG. 5



**FIG.** 3

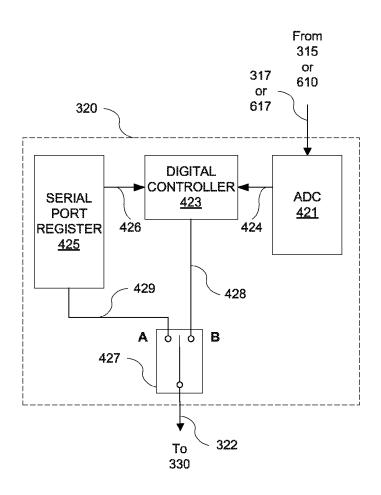
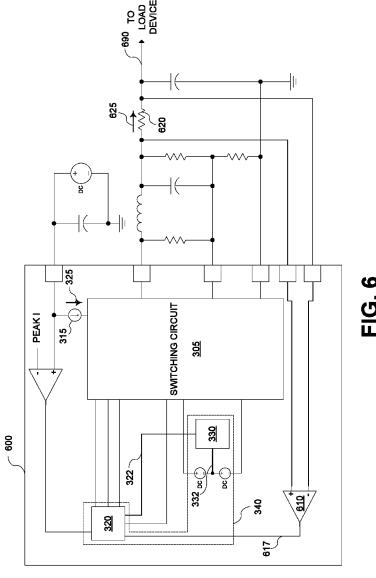
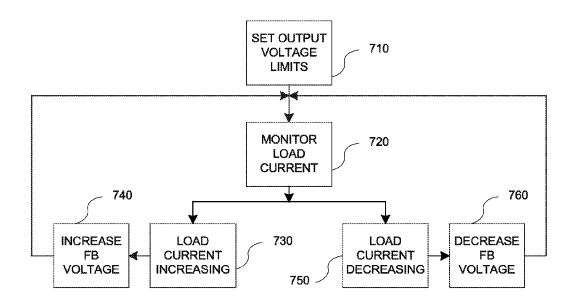





FIG. 4







**FIG. 7** 



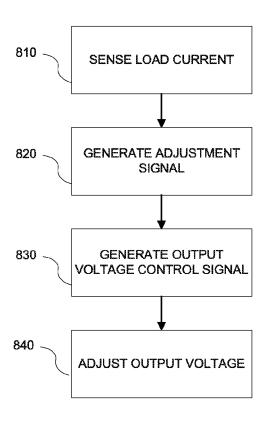



FIG. 8

### SELF-ADAPTIVE VOLTAGE SCALING

# CROSS-REFERENCE TO RELATED APPLICATION(S)

This application claims the benefit of U.S. Provisional Application No. 61/904,423 filed Nov. 14, 2013, the disclosure of which is hereby incorporated in its entirety by reference

### BACKGROUND

#### 1. Technical Field

Apparatuses and methods consistent with the present inventive concept relate to power supplies, and more particularly to self-adaptive voltage scaling for power supply regulation.

#### 2. Related Art

A System-On-Chip (SOC) may provide the components necessary to control operation of a storage device, for example, a hard disk drive, a hybrid hard drive, etc. The SOC may have different operational modes, for example, an idle mode during which the SOC consumes a least amount of power and an active mode during which the SOC consumes significantly more power than the idle mode.

#### BRIEF DESCRIPTION OF THE DRAWINGS

Aspects and features of the present inventive concept will 30 be more apparent by describing example embodiments with reference to the accompanying drawings, in which:

FIG. 1 is a block diagram illustrating a power system according to example embodiments of the present inventive concept;

FIG. 2 is a graph illustrating an output voltage response to a load for a conventional regulated power supply;

FIG. 3 is a circuit diagram illustrating a regulator circuit according to example embodiments of the present inventive 40

FIG. 4 is a block diagram illustrating a logic circuit according to example embodiments of the present inventive concept;

FIG. **5** is a graph illustrating an output voltage response 45 to a load for a regulated power supply in a self-adaptive voltage scaling mode according to example embodiments of the present inventive concept;

FIG. 6 is a circuit diagram illustrating a regulator circuit according to example embodiments of the present inventive 50 concept;

FIG. 7 is a flow chart illustrating a method according to example embodiments of the present inventive concept; and

FIG. **8** is a flow chart illustrating another method according to example embodiments of the present inventive concept.

### DETAILED DESCRIPTION

While certain embodiments are described, these embodiments are presented by way of example only, and are not intended to limit the scope of protection. The methods and systems described herein may be embodied in a variety of other forms. Furthermore, various omissions, substitutions, and changes in the form of the example methods and 65 systems described herein may be made without departing from the scope of protection.

2

Overview

During the active mode of the SOC, SOC operation can cause high power supply loads and large load steps. Power supply regulators must be designed to handle maximum output current, for example, 2 amps (A) as well as sudden load increases, for example, a load step from 200 mA to 2 A (i.e., a load step of 1.8 A) within microseconds, while maintaining the output voltage within upper and lower specification limits.

However, the storage device may be operating in idle mode at low current for an extended period of time. If the power supply regulator output voltage is set to handle a large current step while staying within specification during a load step, but the load step does not happen for a long time, power is wasted.

FIG. 1 is a block diagram illustrating a power system according to example embodiments of the present inventive concept. Referring to FIG. 1, a power integrated circuit (IC) 110 may include one or more regulators 140a-140c to provide regulated output voltages and/or currents. One or more regulated output voltages may be supplied to various devices, i.e., loads, for example, but not limited to, an SOC 120, a memory 130, etc. Each load may have voltage and current requirements that a regulator 140a-140c maintains within predetermined upper and lower limits.

FIG. 2 is a graph illustrating an output voltage response to an SOC load for a conventional regulated power supply. As illustrated in FIG. 2, a power supply regulator provides an output voltage 200 between an upper voltage limit 210 and a lower voltage limit 215. With the storage device operating in idle mode for an extended period of time, the SOC may require only a low operating current 220, for example, about 200 mA, and the power supply regulator operates to maintain a specified output voltage 205.

However, a transition of the storage device to an active mode may result in a step 225 in load current, for example, up to 2 A 230, by the SOC. As a result of the step 225 in load current, the specified output voltage 205 may drop 235 and then achieve a steady state voltage 240 lower than the specified output voltage 205 during idle mode operation. Similarly, when the storage device returns to idle mode operation, the load current requirement of the SOC drops 245 causing a large spike 250 in the output voltage 200 before the output voltage achieve a steady state 255.

Some embodiments of the present inventive concept provide apparatuses and methods for self-adaptive voltage scaling for power supply regulation.

Regulator Circuit

FIG. 3 is a circuit diagram illustrating a regulator circuit according to example embodiments of the present inventive concept. The regulator circuit 300 may include a switching circuit 305, a current detector 315, a logic circuit 320, a digital-to-analog converter (DAC) 330, and an adjustment circuit 340.

The switching circuit 305 may be configured to generate a duty cycle to regulate an output voltage 390. The current detector 315 may be configured to sense a load current 325 and convert the sensed load current to a DC current sense signal 317. The DC current sense signal 317 may be a voltage signal.

The adjustment circuit 340 may include a logic circuit 320, and a digital-to-analog converter (DAC) 330. The logic circuit 320 may be configured to input the DC current sense signal 317 and generate an adjustment signal 322 based on the DC current sense signal 317. The DAC 330 may be configured to input the adjustment signal 322 and generate an output voltage control signal 332 based on the adjustment

signal 322. If the DC current sense signal 317 is increasing, the output voltage control signal 332 may provide an increasing feedback voltage to the switching circuit 305 that is proportional to the increasing load current 325. If the DC current sense signal 317 is decreasing, the output voltage 5 control signal 332 may provide a decreasing feedback voltage to the switching circuit 305 that is proportional to the decreasing load current 325.

The output voltage control signal **332** generated by the DAC **330** may cause the output voltage **390** to increase or 10 decrease within predetermined upper and lower limits. In various embodiments, the output voltage **390** may be adjusted within the predetermined upper and lower voltage limits proportionally to changes in the DC current sense signal **317**.

FIG. 4 is a block diagram illustrating a logic circuit according to example embodiments of the present inventive concept. Referring to FIGS. 3 and 4, the logic circuit 320 may include an analog-to-digital converter (ADC) 421, a digital controller 423, a serial port register 425, and a switch 20 427.

The ADC **421** may be configured to input the DC current sense signal **317** and based on the DC current sense signal **317** generate an ADC output signal **424** to the digital controller **423**. The serial port register **425** may be userprogrammable. Upper and lower output voltage limits may be programmed in the serial port register **425**. The serial port register **425** may be configured to generate a register output signal **426** to the digital controller **423** indicating the predetermined upper and lower output voltage limits. The serial port register **425** may be further configured to generate a first DAC setting signal **429**.

The digital controller 423 may be configured to input the ADC output signal 424 from the ADC 421 and the register output signal 426 from the serial port register 425 and based 35 on those signals determine a setting for the DAC 330 and output a second DAC setting signal 428.

The switch 427 may be configured to select a first position "A" or to a second position "B". With the switch 427 in position "A", the first DAC setting signal 429 from the serial 40 port register 425 may be output from the logic circuit as the adjustment signal 322 to the DAC 330.

With the switch 427 in position "B", the regulator circuit 300 may be in a self-adaptive voltage scaling mode according to various embodiments, and the second DAC setting 45 signal 428 from the digital controller may be output from the logic circuit 320 as the adjustment signal 322 to the DAC 330

In various embodiments, the adjustment circuit **340** may be configured to adjust the output voltage **390** to a predetermined minimum output voltage in response to a value of the DC current sense signal **317** less than a threshold value, and to adjust the output voltage **390** higher than the predetermined minimum output voltage in response to a value of the DC current sense signal **317** equal to or greater than the 55 threshold value.

FIG. 5 is a graph illustrating an output voltage response to a load for a regulated power supply operating in a self-adaptive voltage scaling mode according to example embodiments of the present inventive concept. FIG. 5 shows 60 the output voltage 390 response to changes in the DC current sense signal 317 resulting from changes in the load current 325. Referring to FIGS. 3-5, a regulator circuit 300 operating in a self-adaptive voltage scaling mode may operate to maintain an output voltage 390 between a predetermined 65 upper voltage limit 510 and a predetermined lower voltage limit 515. For a low load current 325, for example, about 200

4

mA, the value 520 of the DC current sense signal 317 may be less than a predetermined threshold value 525.

In response to a value of the DC current sense signal 317 less than the predetermined threshold value 525, the regulator circuit 300 may adjust the output voltage 390 to a predetermined minimum output voltage 530. When the load current 325 increases, the value of the DC current sense signal 317 may increase to a value 535 equal to or greater than the predetermined threshold value 525. In response, the regulator circuit 300 may adjust the output voltage 390 to a value 540 higher than the predetermined minimum output voltage 530. Similarly, when the load current 325 again decreases, the value of the DC current sense signal 317 may decrease to a value 545 below the predetermined threshold value 525, the regulator circuit 300 may adjust the output voltage 390 back to the predetermined minimum output voltage 530.

It should also be noted that for step increases and decreases in load current 325, output voltage 390 undershoot 550 and overshoot 555 may be reduced for the regulator circuit 300 operating in a self-adaptive voltage scaling mode according to various embodiments as compared to conventional regulator circuit operation.

FIG. 6 is a circuit diagram illustrating a regulator circuit according to example embodiments of the present inventive concept. The regulator circuit 600 may include a switching circuit 305, a logic circuit 320, a digital-to-analog converter (DAC) 330, an adjustment circuit 340, and an amplifier 610.

The switching circuit 305, logic circuit 320, DAC 330, and adjustment circuit 340 operate as described with respect to FIG. 3 and their operation will not be further explained here.

The amplifier 610 may be configured to sense a voltage drop across a first resistive element 620 resulting from a load current 625 flowing through the first resistive element 620. The first resistive element 620 may be, for example, but not limited to, one or more fixed or trimmable resistors, or other resistive device producing a voltage drop proportional to current through the device.

The amplifier 610 may be configured to convert the sensed load current 625 to a DC current sense signal 617. The DC current sense signal 617 may be a voltage signal. The DC current sense signal 617 may be input to the logic circuit 320 in the adjustment circuit 340, and operation of the regulator circuit 600 may be as explained with respect to FIGS. 3 and 5, where the DC current sense signal 617 from the amplifier 610 may be input to the logic circuit 320 in place of the DC current sense signal 317 from the current detector 315.

FIG. 7 is a flow chart illustrating a method according to example embodiments of the present inventive concept. Referring to FIGS. 3-7, the upper and lower output voltage limits may be set by programming the serial port register 425. The serial port register 425 may be configured to generate a register output signal 426 to the digital controller 423 indicating the predetermined upper and lower output voltage limits (710).

In some embodiments, load current 325 may be monitored using a current detector 315 that may be configured to sense the load current 325 and convert the sensed load current to a DC current sense signal 317 (720). In some embodiments, load current 625 may be monitored using an amplifier 610 that may be configured to sense a voltage drop across a first resistive element 620 resulting from the load current 625 flowing through a first resistive element 620 and generate a DC current sense signal 617 (720).

If the load current 325, 625 is increasing (730), the DAC 330 may generate an output voltage control signal 332 to increase feedback voltage to the switching circuit 305 (740). The logic circuit 320 may generate an adjustment signal 322 to the DAC 330 based on the DC current sense signal 317, 5617 to generate an increasing feedback voltage to the switching circuit 305 that is proportional to the increasing load current 325, 625.

If the load current **325**, **625** is decreasing (**750**), the DAC **330** may generate an output voltage control signal **332** to 10 decrease feedback voltage to the switching circuit **305** (**760**). The logic circuit **320** may generate an adjustment signal **322** to the DAC **330** based on the DC current sense signal **317**, **617** to generate a decreasing feedback voltage proportional to the decreasing load current **325**, **625**.

FIG. 8 is a flow chart illustrating another method according to example embodiments of the present inventive concept. Referring to FIGS. 3-8, in some embodiments, load current may be sensed using a current detector 315 that may be configured to sense a load current 325 and convert the 20 sensed load current to a DC current sense signal 317 (810). In some embodiments, load current may be sensed using an amplifier 610 that may be configured to sense a voltage drop across a first resistive element 620 resulting from the load current 625 flowing through a first resistive element 620 and 25 generate a DC current sense signal 617.

The DC current sense signal 317, 617 may be input to a logic circuit 320 in an adjustment circuit 340, and the logic circuit 320 may generate an adjustment signal 322 based on the DC current sense signal 317, 617 (820).

The adjustment signal 322 may be input to a DAC 330, and based on the adjustment signal 322 the DAC 330 may generate an output voltage control signal 332 (830). The output voltage control signal 332 generated by the DAC 330 may cause the output voltage 390, 690 to increase or 35 decrease within predetermined upper and lower limits (840). In various embodiments, the output voltage 390, 690 may be adjusted within the predetermined upper and lower voltage limits proportionally to changes in the DC current sense signal 317.

The output voltage 390, 690 may be adjusted to a predetermined minimum output voltage in response to a value of the sensed load current 325, 625 less than a threshold value, and the output voltage 390, 690 may be adjusted higher than a predetermined minimum output voltage in response to the 45 value of the sensed load current 325, 625 equal to or greater than a threshold value.

While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the protection. The 50 methods and systems described herein may be embodied in a variety of other forms. Various omissions, substitutions, and/or changes in the form of the example methods and systems described herein may be made without departing from the spirit of the protection.

The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the protection. For example, the example systems and methods disclosed herein can be applied to hard disk drives, hybrid hard drives, and the like. 60 As another example, the various components illustrated in the figures may be implemented as software and/or firmware on a processor, ASIC/FPGA, or dedicated hardware. Also, the features and attributes of the specific example embodiments disclosed above may be combined in different ways to 65 form additional embodiments, all of which fall within the scope of the present disclosure.

6

Although the present disclosure provides certain example embodiments and applications, other embodiments that are apparent to those of ordinary skill in the art, including embodiments which do not provide all of the features and advantages set forth herein, are also within the scope of this disclosure. Accordingly, the scope of the present disclosure is intended to be defined only by reference to the appended claims

What is claimed is:

- 1. A regulator circuit, comprising:
- a current detector configured to sense a load current and convert the sensed load current to a DC current sense signal; and
- an adjustment circuit comprising:
  - a logic circuit configured to input the DC current sense signal and generate an adjustment signal based on the DC current sense signal; and
  - a digital-to-analog converter configured to input the adjustment signal and generate an output voltage control signal based on the adjustment signal,
- wherein the adjustment circuit is configured to adjust an output voltage within predetermined upper and lower voltage limits based on the DC current sense signal, and
- wherein the output voltage control signal causes the output voltage to increase or decrease within the predetermined upper and lower voltage limits.
- 2. The regulator circuit of claim 1, wherein DC current sense signal is a voltage signal.
- 3. The regulator circuit of claim 1, wherein in response to a value of the DC current sense signal equal to or greater than a threshold value, the adjustment circuit is further configured to adjust the output voltage higher than a predetermined minimum output voltage.
- **4**. The regulator circuit of claim **1**, wherein the adjustment circuit is further configured to increase and decrease the output voltage control signal proportionally to changes in the DC current sense signal.
- 5. The regulator circuit of claim 1, wherein in response to a value of the DC current sense signal less than a threshold value, the adjustment circuit is further configured to adjust the output voltage to a predetermined minimum output voltage.
  - 6. A regulator circuit, comprising:
  - a first resistive element configured to sense a load current; an amplifier configured to convert the sensed load current to a DC current sense signal; and
  - an adjustment circuit comprising:
    - a logic circuit configured to input the DC current sense signal and generate an adjustment signal based on the DC current sense signal; and
    - a digital-to-analog converter configured to input the adjustment signal and generate an output voltage control signal based on the adjustment signal,
  - wherein the adjustment circuit is configured to adjust an output voltage within predetermined upper and lower voltage limits based on the DC current sense signal, and wherein the output voltage control signal causes the output voltage to increase and decrease within the predetermined upper and lower voltage limits.
  - 7. The regulator circuit of claim 6, wherein in response to a value of the DC current sense signal equal to or greater than a threshold value, the adjustment circuit is further configured to adjust the output voltage higher than a predetermined minimum output voltage.
  - 8. The regulator circuit of claim 6, wherein DC current sense signal is a voltage signal.

- **9**. The regulator circuit of claim **6**, wherein in response to a value of the DC current sense signal less than a threshold value, the adjustment circuit is further configured to adjust the output voltage to a predetermined minimum output voltage.
- 10. The regulator circuit of claim 6, wherein the adjustment circuit is further configured to increase and decrease the output voltage control signal proportionally to changes in the DC current sense signal.
- 11. A method for regulating a voltage, the method comprising:  $^{10}$

sensing a load current;

converting the sensed load current to a DC current sense signal;

generating a digital adjustment signal based on the DC current sense signal;

generating an analog output voltage control signal based on the adjustment signal; and 8

adjusting the output voltage within predetermined upper and lower voltage limits with the output voltage control signal.

wherein the output voltage control signal causes the output voltage to increase or decrease within the predetermined upper and lower voltage limits.

- 12. The method of claim 11, further comprising increasing and decreasing the output voltage control signal proportionally to changes in a DC current sense signal.
- 13. The method of claim 11, further comprising adjusting the output voltage to a predetermined minimum output voltage in response to a value of the sensed load current less than a threshold value.
- 14. The method of claim 11, further comprising adjusting
  15 the output voltage higher than a predetermined minimum
  output voltage in response to the value of the sensed load
  current equal to or greater than a threshold value.

\* \* \* \* \*